Introduction to Mapping in R

One of the goals of the Digital Project Studio is to develop a set of helpful materials for people interested in various visualization tasks. Part of working towards this goal is cleaning up some already existing notes for in person workshops into usable standalone tutorials.

This workshop is designed to introduce you to some of the geospatial packages that can be used in R through a series of examples. It requires some experience with either the R language or with working with geospatial data. All the data necessary are provided in the download links at the top of the workshop page. The instructions are both on this webpage and in a pdf named script_markup.pdf in the downloaded files.

Mapping R Workshop

If you are interested in how we made the instructions for this workshop, check out our blog post:

Creating R Tutorials Using RMarkdown: Code Chunk Options


projects, Tutorials

Creating R Tutorials Using RMarkdown: Code Chunk Options

Two of us here in the Digital Project Studio have recently been working through an R script developed for a workshop on doing some basic mapping in R. The goal was to turn the script, which was used alongside in-person instruction, into a usable self-directed tutorial.  To do this we used R Markdown, an authoring platform that turns R scripts into reproducible and dynamic documents, presentations, and webpages. Our introductory tutorial will get you set up and started to using R Markdown. On this post we’ll share some of the additional features we’ve learned using this platform.

To find the actual R mapping workshop we created, the instructions and file downloads are accessible here: http://clarkdatalabs.github.io/mapping_R/

In the zipped file package you can find our R Markdown file for creating the instructions of the workshop: script_markup.Rmd

Continue reading


Reflections on Learning Data Visualization – Digital Projects Studio Year 2

The second cohort of data visualization interns are off and running here at the Digital Project Studio. They will be sharing the projects they are working on very soon. But, as they are getting up to speed, I want to take a minute to reflect on learning about data visualization and technology in general. Recently, in our Tech and Texts seminar series, we read some selections of Wilkinson’s The Grammar of Graphics (an interesting book which formed the basis for the R plotting library ggplot). He begins with an insightful reflection on the difference between graphics and charts:

Continue reading


Once More, With Feeling: Draws and Drawbacks of Sentiment Analysis

Our Project

Opinions tend to reflect feelings as well as beliefs. Sentiment analysis, also known as opinion mining, is a technique used today for generating data on trends in people’s attitudes and feelings on anything from products and services to current events. This data is created by calculating sentiment scores using what people have said or written. Despite the efforts of computer scientists, semanticists and statisticians to figure out ways to program computers to identify the feelings expressed in words, the technique of sentiment analysis is still at best only reliable as a starting point for closer readings.

The results of sentiment analysis can quickly become misleading if presented without any reference to the actual passages of text that were analyzed. Nevertheless, it is helpful as a technique for delving into large corpora and collections of unstructured texts to capture trends and shifts in sentiment intensity.

For a final collaborative project of the academic year 2015-2016, our team at the Digital Projects Studio decided to take on the challenge of visualizing the intensity of emotions and opinions expressed during the 2016 primary election debates. (Click here to see the final product). Our dataset was a set of complete transcripts for twelve Republican and eight Democratic debates. To process the data, we filtered out interventions of moderators and interjections from the audience, ran the statements of each candidate through a sentiment analyzer from Python’s NLTK (Natural Language ToolKit) library, and indexed the statements of each candidate by debate number, numeric sentiment score, and sentiment category.

Continue reading


Customizing Applications in Django

This post is a follow-up to the introduction to the Field Notebook and the demo notebook, ‘Monumental Gifts’. I will go over how to install the app and start customizing your own web-based Field Notebook. This post will focus on how to start tailoring the models and appearance of your Notebook to suit your needs for your research. If you are interested (or discover later that you are interested) in building your own original application from scratch, I recommend working through the Beginner’s Tutorial on Django’s website. In fact, even if you don’t plan on building your own application, I still recommend the tutorial. You’ll have better understanding of how to modify and use your Field Notebook if you become familiar with how Django works as a framework.

Installing the app

Continue reading